联系方式
  • 公司: 深圳精成学社高中数学辅导班
  • 地址: 深圳市福田区百花园紫荆阁
  • 联系: 方老师
  • 手机: 13427980436
  • 邮箱: 365808458@qq.com
  • 微信: 134--2798--0436
  •  
  • 本站共被浏览过 3335 次

产品信息

更多...
价 格:面议

基础数学是多数古文明的教育系统的一部分,包括古希腊,罗马帝国,吠陀社会和古埃及。在多数情况下,只有足够高地位,财富或等级的男性孩童才能接受正规教育

在柏拉图把文科分成三学科和四学科的划分中,四学科包括数学的算术和几何领域。这个结构在中世纪欧洲所发展的经典教育的体系得到了延续。几何的教育基于欧几里得的原本。商业的学徒,如石匠,商人和借贷者需要学习和他们的行业相关的这种实用数学。

在不同的时期在不同的文化和国家中,数学教育试图达到不同的目标。

教授给所有学生的数字技巧。

教授给大部分学生的实用数学(算术,基础代数,平面和立体几何,三角学),使得他们有能力从事贸易或手工业。

早期的抽象代数概念教育(例如集合和函数)。

选择性的数学领域的教育(例如欧式几何)作为公理化体系的实例和演绎推理的一个模型。

选择性的数学领域的教育(例如微积分)作为现代社会的智力成就的一个实例。

教授给希望以科学为职业的学生的高等数学。

数学教育的方式和变化的目标一致。

任何特定环境下的方法很大程度上由相关的教育系统所设定的目标所决定。教授数学的方法包括:

经典教育 -中世纪的经典教育大纲中的数学教育通常基于欧几里得原本,它被作为演绎推理的范式来教授。

死记硬背 - 通过重复和记忆来教授数学结果,定义和概念。通常用于乘法表。

习题 - 通过完成大量同类的练习来传授数学技巧,例如加带分数或者解二次方程。例如,古氏积木(Cuisenaire rods)来教授分数。

问题求解- 通过给学生无标准答案,不同寻常的,和有时候无解的问题来培养数学的智力,创造力和启发式思考。问题的范围可以从词问题到像国际数学奥林匹克竞赛这样的国际数学竞赛问题。

新数学 - 一种专注于集合论这样的抽象概念而不是实际应用的教授数学的方法。

历史方法 - 教授在一个历史,社会和文化背景下数学的发展过程。比纯粹抽象的方式提供了更多的人文乐趣。

这些方法不是所有的,而且任何数学教育系统很可能包含很多不同的方法。

中华人民共和国成立后,在人民政府的集中领导下,采用了苏联的教育制度,数学教育也经历了巨大变革。经过1952年的院系调整,师范院校和综合大学都设立了数学系,全国有了统一制订的教学计划和教学大纲,广泛引进了苏联教材,各校必修课的设置及其内容规范化了,保证了一定水平。数学基础课一般都设了习题课,对学生的帮助更为具体。师范院校的数学专业在基础课的设置上,与综合大学的数学专业相近,并增设教育学、心理学、数学教学法及教育实习等课和教学环节。综合大学的数学专业一度在最后一年至一年半的时间里分为若干专门组,如代数、数论、几何、拓扑、函数论、泛函分析、微分方程、概率论与数理统计等,学生能接触到一些现代数学的前沿工作。后来专门组撤销,课程更多样化了。

从19世纪20年代后期起,浙江大学数学系就开始采用讨论班的形式来培养学生独立 工作能力和从事科研工作能力;其他如西南联合大学也曾采用过。到了50年代,结合专门组教学,这种作法得到进一步推广,各主要大学数学系都逐步开展了科学研究工作,并招收了研究生。由于国内培养的数学人才不断增加,教师队伍逐渐改变了过去主要依靠归国留学生的局面,由教育部组织编写的以及个人编写的教材也逐渐取代了外国教材,它们一般较结合本国实际。1957年以后,一些学校开展了应用数学方面的研究,增设了计算数学专业或专门组,开设了如运筹学等课程,概率统计等课程的开设更为普遍,培养了有关方面的人才。理、工等科系的学生,一般也学习一定份量的高等数学课程。