联系方式
  • 公司: 深圳精成学社高中数学辅导班
  • 地址: 深圳市福田区百花园紫荆阁
  • 联系: 方老师
  • 手机: 13427980436
  • 邮箱: 365808458@qq.com
  • 微信: 134--2798--0436
  •  
  • 本站共被浏览过 3369 次

产品信息

更多...
价 格:面议

作为一门基础科学,高等数学有其固有的特点,这就是高度的抽象性、严密的逻辑性和广泛的应用性。抽象性和计算性是数学最基本、最显著的特点,有了高度抽象和统一,我们才能深入地揭示其本质规律,才能使之得到更广泛的应用。严密的逻辑性是指在数学理论的归纳和整理中,无论是概念和表述,还是判断和推理,都要运用逻辑的规则,遵循思维的规律。所以说,数学也是一种思想方法,学习数学的过程就是思维训练的过程。人类社会的进步,与数学这门科学的广泛应用是分不开的。尤其是到了现代,电子计算机的出现和普及使得数学的应用领域更加拓宽,现代数学正成为科技发展的强大动力,同时也广泛和深入地渗透到了社会科学领域。

无穷进入数学,这是高等数学的又一特征。现实世界的各种事物都以有限的形式出现,无穷是对他们的共同本质的一种概括。所以,无穷进入数学是数学高度理论化、抽象化的反映。数学中的无穷以潜无穷和实无穷两种形式出现。在极限过程中,变量的变化是无止境的,属于潜无穷的形式。而极限值的存在又反映了实无穷过程。最基本的极限过程是数列和函数的极限。数学分析以它为基础,建立了刻画函数局部和总体特征的各种概念和有关理论,初步成功地描述了现实世界中的非均匀变化和运动。另外一些形式上更为抽象的极限过程,在别的数学学科中也都起着基本的作用。还有许多学科的研究对象本身就是无穷多的个体,也就说是无穷集合,例如群、环、域之类及各种抽象空间。这是数学中的实无穷。能够处理这类无穷集合,是数学水平与能力提高的表现。为了处理这类无穷集合,数学中引进了各种结构,如代数结构、序结构和拓扑结构。另外还有一种度量结构,如抽象空间中的范数、距离和测度等,它使得个体之间的关系定量化、数字化,成为数学的定性描述和定量计算两方面的桥梁。上述结构使得这些无穷集合具有丰富的内涵,能够彼此区分,并由此形成了众多的数学学科。

绝大部分的历史时期,数学教育的标准是地域性的,由不同的学校或教师根据学

生的水平和兴趣来设置。

在现代,有一种趋势是建立地区或国家标准,通常隶属于更广泛的学校教学大纲。例如在英国,数学教育的标准是英国国家教育大纲的一部分。在美国,美国数学教师国家委员会制定了一系列文档,最近的有学校数学的原则和标准,为学校数学的总体目标达成了一致。更具体的教学标准一般在州一级制定 - 譬如在加利福尼亚,加州教育理事会为数学教育制定了标准

1931年清华大学开始培养数学研究生,后继者有浙江大学、中央大学、北京大学以及抗日战争期间由北京大学、清华大学、南开大学组成的(昆明)西南联合大学,数学的研究工作也比较集中在这几所学校。其中清华大学、浙江大学、武汉大学等还出版了刊物,登载数学论文。

除了在国内培养数学人才外,还通过一些渠道派遣留学生,例如利用中美庚款、中英庚款和中法庚款公开考试派送的留学生中,都有数学名额。30年代还曾邀请少数外国数学家如 W.F.奥斯古德、N.维纳、J.(-S.)阿达马等来华讲学。 从辛亥革命到中华人民共和国成立,是中国现代数学教育的奠基时期,不少老一辈数学家如姜立夫、熊庆来、陈建功等克服重重困难,艰苦创业,培养了一批数学人才;数量虽然不多,但对于使现代数学在中国土壤上生根,作出了宝贵贡献。